قسم هنسة الإنتاج والتصميم

ANSWER ALL OUESTIONS

Question No. One

[20 Marks]
a) Show by neat sketches only the feed and cutting motions for the following processes: /5 Marks]

1- Cutting-off in turning.
2- Cylindrical grinding.
3- Planing operation.
4- Reaming process.
5- Face milling operation
b) In a particular mechanical shaper mechanism, the length of the rocker arm is 1400 mm , the rocker arm pivot is 1400 mm below the connection between the link and the arm, the radius of the crank is 150 mm , and the crank pivot is 700 mm above the rocker arm-arm pivot. If the crank is rotated at $0.3 \mathrm{~s}^{-1}$, calculate:

1- The time for a forward stroke of the ram, [5 Marks]
2- The time for a return stroke of the ram, and
[5 Marks]
3- The maximum cutting speed during the forward stroke in (m / s).
[5 Marks]

Question No. Two

[20 Marks]
a) Derive (with help of sketches) an expression for determining the average metal removal rate for external cylindrical turning.
[5 Marks]
b) Derive (with help of sketches) an expression for determining machining time in slab milling operation.
[5 Marks]
c) In a drilling operation using a twist drill, the rotational frequency of a drill is $5 \mathrm{~s}^{-1}$, the feed 0.25 mm , the major cutting-edge angle 60°, and the drill diameter 12 mm . Assuming that the specific cutting energy for the work material is $2 \mathrm{GJ} / \mathrm{m}^{3}$, calculate:

1- The maximum removal rate,
[3 Marks]
2- The undeformed chip thickness, and
[3Marks]
3- The drill torque.

Question No. Three

a) During turning operation, three main forces act on the point of the cutting tool, with help of neat sketches:
[5Marks]

- Show the positions of these forces relative to the tool point.
- In what type of turning operations would only two of these forces act on the tool point?
- Show by means of diagram these two forces acting on the tool.

$$
\begin{aligned}
& \text { التاريخ: } \\
& \text { الثزمن: } \\
& \text { (الثرجة: • } 9 \text { لرجة }
\end{aligned}
$$

b) How do the following parameters affect the cutting forces in orthogonal cutting:
[5Marks]

- Rake angle.
- Depth of cut, and
- Cutting speed.
c) In an orthogonal cutting test on a lathe, the following information was gathered. The feed rate was 0.1 mm and the chip thickness after cut was 0.2 mm . The depth of chip being cut was 5 mm . The surface cutting speed of the tool was $2 \mathrm{~m} / \mathrm{s}$. The tool has a rake angle of 10°. The tangential force was measured as 200 N and the cutting force was 500 N .

Calculate:

[10Marks]

- The shear force and velocity,
- The total energy produced in the cut,
- The energy used to shear, and
- Explain the difference between the total and shear energy.

Question No. Four

[20 Marks]
a) What are the effects of high cutting temperature on both the machined workpiece and on the cutting tool used?
[5Marks]
b) Describe briefly the effects of tool geometry and cutting conditions on tool life.
[5Marks]
c) A tool life of 110 min is obtained at $25 \mathrm{~m} / \mathrm{min}$ and 10 min at $65 \mathrm{~m} / \mathrm{min}$. What is the tool life equation? Determine the cutting speed for a tool life of 1 min and 60 min . Also, determine the tool life for speed of $50 \mathrm{~m} / \mathrm{min}$.
[10Marks]

Question No. Five

[10 Marks]
a) State (with help of sketches) the ideal surface roughness for a cutting tool with a sharp corner and for another with a rounded corner.
[5Marks]
b) What are the reasons for using chip breakers in metal cutting? Illustrate with suitable equations and sketches two different types of chip breakers.
[5Marks]

